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The buoyancy-driven flushing of fluid from a rectangular box via connections in the
base and top into quiescent surroundings of uniform density is examined. Our focus is
on the transient flows that develop when the interior is either initially stably stratified
in two homogeneous layers – a dense layer below a layer at ambient density, or
is filled entirely with dense fluid. Experiments with saline stratifications show that
four distinct patterns of flow are possible. We classify these patterns in terms of the
direction of flow through the base opening and the propensity of replacement fluid
through the top opening to induce interfacial mixing. Unidirectional or bidirectional
flow through the base opening may occur and within these two flow types either
weak or vigorous interfacial mixing. We identify the three controlling geometrical
parameters that determine which flow pattern is established, namely the fractional
initial layer depths, the relative areas of the top and base openings and the horizontal
length scale of the top opening relative to the initial dense layer depth. We show
that these parameters may be reduced to two Froude numbers – one based on the
fluxes through the base opening and whose value sets the direction of flow, and a
second based on conditions at the top opening whose value determines the vigour of
interfacial mixing. Theoretical models are developed for predicting the conditions for
transition between each flow pattern and expressed as critical values of the Froude
numbers identified.

1. Introduction
In the seventeenth century, Evangelista Torricelli considered the draining of liquids

under gravity from a vessel through small openings. He examined the case where
the density difference (�ρ) between the draining fluid and the ambient environment
was large, focusing on water draining in air. Torricelli’s law gives the speed of the
liquid at the opening as v =

√
2gh (Torricelli 1643; Batchelor 1967), where g is the

acceleration due to gravity, and h the vertical distance between the free surface and
the centre of the opening. We revisit this basic problem (hereafter the ‘emptying box’)
but instead focus on the Boussinesq case where the density difference between the
draining fluid and ambient environment is small compared with a reference density.
Mixing between the two fluids then plays a role both in its influence on the rate of
draining and on the developing stratification within the body of the draining fluid.
The basic situation considered is shown in figure 1.

The draining of a fluid from a container (a box), initially filled with fluid slightly
denser than the quiescent ambient, via base openings only and via a combination
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Figure 1. Schematic showing the situation considered herein.

of base and top openings, has been examined by Linden, Lane-Serff & Smeed
(1990). Their experiments, in which saline solutions were drained from containers
into still fresh water environments, showed that horizontal openings positioned at a
single (low) level enabled an exchange flow in which vigorous turbulent mixing was
observed between inflowing plumes at ambient density and the denser interior. A
slow dilution of the interior, which remained at an approximately uniform density,
resulted. These flows are often referred to as ‘mixing flows’. Epstein (1988) considered
the buoyancy-driven exchange of fluid across circular openings, of diameter dB in a
horizontal boundary of thickness lB , and showed that the dimensionless volume flux

through these openings is of the form Q/
√

d5
Bg′ = f (lB/dB) , where g′(t) = g�ρ(t)/ρe

is the reduced gravity at a time t , �ρ the density step across the opening and ρe a
reference density. For lB/dB � 1, experiments by Epstein (1988) supported the scaling

Q/
√

d5
Bg′ = k ≈ 0.055. By assuming that a uniform density profile is maintained in

the box, which requires that the incoming fluid mixes instantaneously and completely
throughout the interior, Linden et al. (1990) used Epstein’s result to show that the
interior density tends algebraically to the exterior density on a time scale τ :

�ρ(t)

�ρ0

=
g′(t)

g′
0

=

(
1 +

t

τ

)−2

, τ =
2V

kaB(g′
0dB)1/2

, (1.1)

where V is the volume of the box and aB the area of the base opening. In (1.1),
g′

0 = g�ρ0/ρe is the initial reduced gravity of the interior, achieved with an initial
density contrast �ρ0.

In order to distinguish between flows we identify in § 3 for which there is vigorous
but not complete mixing, we refer to mixing flows in which the interior remains
at (approximately) uniform density for all time as ‘classical mixing flows’. In our
experiments (§ 3) a non-uniform stratification evolved in the interior when one or
more base openings were positioned at a single level. For this reason we refer to flows
for which bidirectional flow occurs through the base opening(s) as ‘exchange flows’
and distinguish between the dynamics at the level of the opening and the developing
stratification.

Experiments by Linden et al. (1990) also showed that openings both in the base
and top of a box (of areas aB and aT , respectively) can result in an efficient means
of flushing the interior. They refer to the resulting flow as ‘displacement flow’ as
dense fluid drains out through the base opening(s) and is replaced, in the absence of
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mixing, by fluid at ambient density drawn in through the top opening(s). In contrast
to mixing flow there is unidirectional flow through each opening. Linden et al. (1990)
characterize the combination of top and base openings using an ‘effective’ opening
area, which Hunt & Linden (2001) express as

A∗ =

(
1

2c2
T a2

T

+
1

2c2
Ba2

B

)−1/2

, (1.2)

where cT and cB are loss coefficients (normally assumed constant for high-Reynolds-
number flow) for the top and base openings, respectively. They observed that
interfacial mixing due to the inflow was negligible and that a two-layer stratification
and ‘displacement flow’ was established and maintained throughout the transients.
Linden et al. (1990) report on flows established with top opening areas greater than
twice the base opening areas (aT > 2aB) and that, with this geometry, evidence of weak
mixing induced by the inflow is visible inside their box (Linden et al. 1990, figure 8).
We return to these results in § 4.1 and § 5 in the context of our full classification of
emptying-box flows.

Linden et al. (1990) determined the dependence of the rate of flushing for
displacement flows Q(t) ≡ Qd(t) on the density contrast �ρ(t) (assumed constant
and equal to �ρ0 due to the absence of buoyancy transfers between fluid and box)
and instantaneous saline layer depth. Assuming no mixing between the inflowing
ambient fluid and the interior they showed

Qd(t) = A∗
[∫ H

0

g′dz

]1/2

= A∗√g′
0h(t) (1.3)

and that the layer depth is well described by

h(t)

H
=

(
1 − t

tE

)2

, tE =
2S

A∗

(
H

g′
0

)1/2

, (1.4)

where tE is the time taken for dense fluid of initial depth H to empty completely from
a box of cross-sectional area S (independent of height) via openings of effective area
A∗. Hereafter, we refer to displacement flow in the absence of mixing as ‘classical
displacement flow’.

Mixing and displacement flows are regarded as the two basic modes of flushing.
Their relative flushing rates are considered in detail by Coffey & Hunt (2007) in the
context of ventilation effectiveness where it is shown that mixing flow may provide
the most effective means of flushing, at least for a portion of the draining period. In
the context of a ventilated room or the flushing of a gaseous pollutant following an
accident, it may be desirable to establish a combination of the two basic modes of
flushing (see § 3), i.e. to locally induce mixing whilst achieving a bulk displacement of
fluid from the room.

In this paper we revisit the basic problem of flushing dense fluid from a box, via
openings in the top and base, into quiescent surroundings of uniform density (figure 1).
The interior is initially filled, or partially filled, with fluid of uniform density ρ0 so
that, in general, the initial stratification is in two homogeneous layers – a dense layer
below a layer at ambient density. We restrict our attention to density differences
between the dense fluid and the ambient that are small compared with the ambient
density so that the Boussinesq approximation is valid. We examine this ‘emptying box’
through a series of laboratory experiments and present complementary theoretical
models for predicting the transition between the different patterns of flow we identify.
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Our aim is to examine how the stratification, flow patterns and flushing times depend
on the initial stratification and the geometry of the box (e.g. the ratio R = aT /aB

of top and base opening areas). Our observations and measurements show that
the classical displacement and classical mixing flows previously identified represent
only a subset of the possible flow patterns that can be established. Furthermore, we
demonstrate that these classical flows occur within only a relatively small region of
the overall parameter space – when there is either no mixing or there is complete
mixing, respectively, between inflowing replacement fluid and interior fluid. Thus,
these classical flows may be regarded as limiting cases, or indeed idealized cases, in
terms of the extent of mixing and direction of flow they induce.

We show that, in general, the inflow of ambient replacement fluid required for
volume conservation mixes with the denser interior fluid and that, consequently,
the developing stratification and flushing times are not well predicted by current
displacement-flow or mixing-flow theories. Relatively small departures from area
ratios and initial stratifications that result in a classical displacement flow are shown
to result in significant interfacial mixing and the formation of an intermediate layer
which deepens to fill, rather than being flushed from, the box. Further departures
give rise to bidirectional flow at the base with the associated turbulent mixing, albeit
of insufficient vigour to give rise to the (approximately) uniform density environment
synonymous with classical mixing flow. In contrast, one may observe a combination
of both turbulent mixing, confined to the interface region, driven by flow through
the top and further turbulent dilution of the interior fluid due to bidirectional flow
through the base.

The paper is structured as follows. The experimental apparatus is described in § 2.
The results of our experiments are reported in § 3. These results highlight for the first
time the range of flow patterns that may be established in emptying boxes with base
and top openings. We then provide a classification for the different flows observed
and describe the transitions between them. In § 4, we develop theoretical models to
predict the conditions that give rise to these transitions and compare predictions
with our classification deduced from experiments. Finally, our conclusions are drawn
in § 5.

2. Experiments
A glass-sided visualization tank (of internal horizontal cross-section 250 cm ×

125 cm) was filled to a depth of 125 cm with fresh water. Inside, a clear rectangular
Perspex box (wall thickness 1 cm) with internal dimensions H = 30 cm and S = 30 cm ×
40 cm was suspended rigidly approximately 20 cm below the free surface. A number
of circular holes (diameters 3 cm and 5 cm) in the top and base horizontal faces of the
box provided connections between the box interior and the quiescent exterior. These
holes could be plugged using Perspex disks with integral rubber O-rings to provide
a water-tight seal. The hole sizes, numbers and locations allowed opening areas to
be considered within the ranges 0 � aT � 242.0 (cm2) and 7.1 � aB � 39.2 (cm2). The
water in the tank and a saline solution in a separate 140 litre container were allowed
to stand for a number of hours and warm to room temperature prior to beginning
an experiment.

The base holes of the flooded box were initially plugged and the top holes opened.
A two-layer stratification was then set up – a saline layer of uniform density ρ0 and
depth h0 below a fresh water layer of density ρe. A sample was extracted from the
uniform lower layer and the density measured with an Anton Paar DMA 35N density
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meter (accuracy ±0.001 g cm−3). The initial stratification was thus characterized by
the pair {ξ0, g′

0}, where ξ0 =h0/H denotes the fractional initial saline layer depth and
g′

0 = g(ρ0 − ρe)/ρe the initial reduced gravity of the saline layer.
Openings in the top of the box were then plugged until the required value of aT was

obtained with one, or more, openings. At time t = 0, one or more plugs were removed
from the base of the box to give the desired value of aB and start the experiment.
Where possible single openings were used in the top and/or base. When this was not
possible due to the box design, following Linden et al. (1990), aT and aB were taken
to be equal to the sum of the areas of the openings in the top and base, respectively.
These total areas were recorded and used in the analysis.

The apparatus was lit using either collimated light from an Elmo 253E slide
projector and the flow visualized using a shadowgraph, or diffusively backlit with a
bank of high-frequency fluorescent tubes and the flow visualized by initially staining
the lower layer uniformly with methylene blue. Shadowgraph images (figures 4, 6, 8,
10 and 14) were enhanced by correcting for the background variation in the lighting.
Experiments were recorded using a CCD camera (a JAI CV-M4+CL, resolution
1392(h) × 1040(v)) connected to a frame grabber and the captured digital images
analysed using the DigiFlow software (Dalziel 1993). A dye-attenuation technique
(Hacker, Linden & Dalziel 1996 and Cenedese & Dalziel 1998) and camera fitted with
a red filter (Hoya R(25A)) were used in a subset of experiments to obtain non-intrusive
and synoptic measurements of the horizontally averaged density stratification. Density
profiles were deduced by width-averaging (left-to-right in figure 4) across a window
extending from the base to the top of the box – the window location was chosen to
avoid any localized turbulent regions where the assumption of horizontal homogeneity
breaks down. Densities inferred using this technique were typically within 5 % of
those measured directly using the density meter. Due to the optical nature of the
dye-attenuation technique, measurements made within approximately 3 cm of the
base proved unreliable due to reflections. Buoyancy frequency profiles (figures 5, 7,
9, 11 and 12) were calculated from the measured density profiles using a five-point
central-differencing method. Determination of whether the flow was unidirectional or
bidirectional was made by eye – a time-varying lower layer density was also evidence
of bidirectional flow. The initial fractional layer depths and initial reduced gravities
considered were in the ranges 0.1 � ξ0 � 1 and 15 � g′

0 � 100 (cm s−2), respectively. In
total over 250 separate experiments were performed.

3. Flow regimes
We restrict our attention to high-Reynolds-number and high-Péclet-number flows

(typically Re = O(104), Pe =O(106)) so that viscous effects are negligible and
advection dominates the effects of molecular diffusion. Furthermore, we assume
in our theoretical developments (§ 4) that there are no transfers of buoyancy between
the fluid and the box boundaries, as is the case in our experiments. Additionally,
we consider box geometries for which {aT , aB} � S. Specifically, for our experiments
0 � aT /S � 0.2 and 0.006 � aB/S � 0.03. Pressures within the box are thus expected
to vary approximately hydrostatically as assumed in our model of the transitions
between the flows we identify (§ 4).

3.1. Dimensional considerations

Linden et al. (1990) scale the emptying-box problem using the vertical distance
between the openings (H ) as the primary length scale – this scale being equal to their
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initial saline layer depth. For the two-layer initial stratification we consider, the initial
layer depth h0 provides the most appropriate scaling as this scale determines the
initial driving buoyancy force. Thus, we denote ẑ = z/h0 as the dimensionless vertical
coordinate, with origin ẑ =0 coincident with the (internal) base of the box (figure 1),
t̂ = t

√
g′

0/h0 as dimensionless time and express the dimensionless reduced gravity in
the box ĝ′ = g′(z, t)/g′

0 by the functional form

ĝ′ = ĝ′

(
aT

h2
0

,
aB

h2
0

,
H

h0

,
z

h0

, t

√
g′

0

h0

)
. (3.1)

By considering the limiting cases of classical displacement and classical mixing flows,
we expect the relative areas of the openings (i.e. R = aT /aB) to be physically significant;
in these limits R → ∞ and R = 0, respectively. Therefore, for convenience and to aid
physical interpretation, we rewrite the governing dimensionless parameters and express
ĝ′ in the form ĝ′ = ĝ′(R, ξ0, λT , ẑ, t̂) where

R =
aT

h2
0

h2
0

aB

=
aT

aB

, ξ0 =

(
H

h0

)−1

=
h0

H
and λT =

(
aT

h2
0

)1/2

=

√
aT

h0

. (3.2)

The three geometric parameters (3.2) are, thus, the ratio R of the top and base
opening areas, the fractional initial dense layer depth ξ0 and a measure λT of the
length scale characterizing the top opening area relative to the initial dense layer
depth. For a circular opening of radius rT =

√
aT /π, λT = π1/2rT /h0 = π1/2rT g′

0/w
2
T

where the velocity wT =
√

h0g
′
0. Thus, λT is a Richardson number relating an initial

buoyancy-induced velocity based on the scale of the opening to the initial velocity
through the opening. Hence λT may be expected to characterize turbulent mixing
due to the inflow of replacement fluid through the top when the flow is controlled
by the top opening (see § 4.1). We could have alternatively formed the parameter
λB =

√
aB/h0 (≡λT /

√
R) which may be expected to characterize the flow when it is

controlled by the base opening (see § 4.2). However, we shall see in § 4 that λT (or λB)
alone is not sufficient to fully characterize these flows, and that two distinct Froude
numbers FrT (R, λT , ξ0) and FrB(R, λB, ξ0) are required.

Linden et al. (1990) worked with the single dimensionless parameter A∗/H 2 and
showed it was sufficient to characterize displacement flows in the absence of mixing;
we show herein that the individual parameters {R, ξ0, λT }, which A∗/H 2 may be
expressed in terms of, i.e.

A∗

H 2
= 21/2

(
h0

H

)2
aT

h2
0

aB

aT

(
1

c2
B

+
1

c2
T

(
aB

aT

)2
)−1/2

= 21/2 ξ 2
0 λ

2
T

R

(
1

c2
B

+
1

c2
T R2

)−1/2

,

(3.3)

are necessary to characterize general emptying-box flows.
The effect of the individual parameters (3.2) on flow in an emptying box has not

previously been considered. Previous work on displacement flow characterizes the
transient behaviour in terms of the effective opening area and without reference to
the area ratio R or length scale ratio λT . Whilst previous models would suggest that
displacement flow is established for any given opening geometry with {aT , aB} > 0,
we show that this is not the case and that there is only a limited range of
{R, ξ0, λT } parameter space for which displacement flow is realized.
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1. Classical displacement
flow (°)

2. Displacement flow with
interfacial mixing (•)

3. Exchange flow
with interfacial

mixing (  )

4. Exchange flow (Δ)

0

R
~1/4

1

ξ0

Figure 2. Flow regime diagram 1. A slice, for constant λT , through {R, ξ0, λT } space showing
schematics of the four flow patterns observed. Solid arrows indicate the direction of flow
and dotted arrows the direction of motion of density interfaces. The symbol (�, �, � or �)
accompanying each schematic matches with figure 3. The dashed line indicates the boundary
between regimes (1 and 2) in which the flow was unidirectional and regimes (3 and 4) in which
the flow through the base was bidirectional. The solid line indicates the boundary between
regimes (2 and 3) where interfacial mixing resulted in the formation of an intermediate layer,
and regimes (1 and 4) where two layers persisted.

3.2. Observations

Four qualitatively distinct flow patterns were observed depending on R, ξ0 and λT

that gave a bulk vertical flow through the box. Consistent with the dimensional
considerations (§ 3.1), the initial reduced gravity, g′

0, only affected the time scales of
the draining and not the flow pattern attained for a given {R, ξ0, λT }. Figures 2 and
3, hereafter the ‘Flow Regime Diagrams’, indicate the flow pattern observed for a
given {R, ξ0, λT }. Figure 2 shows schematically the main features of the flow patterns
identified and figure 3 illustrates the groupings of these flow patterns based on our
experimental observations. Each individual experiment performed is marked as a
symbol in figure 3 and the four different symbols (�, �, �, �) correspond to the
distinct flow patterns observed – the grouping of these symbols indicates that the
parameter space may be divided into four regions. A fifth pattern exists when aB = 0,
however, transport of fluid from the box is then solely by molecular diffusion for
aT > 0 and this limit will not be discussed further. The solid line in figure 3 shows
the line of constant Froude number FrT (0) = 0.67 (see § 4.1). The dashed line shows
FrB(0) = 0.33 (see § 4.2). These lines mark our theoretical predictions of the flow
pattern transitions.
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Figure 3. Flow regime diagram 2. ξ0 versus R for λT = 0.1 (a), 0.2 (b), 0.3 (c) and 0.4
(d ). For R � 1/4 unidirectional flows were observed (� and �). For R � 1/4 bidirectional flow
was observed at the base (� and �). The hollow symbols (�, �) mark flow patterns 1 and
4, respectively, and indicate values of {R, ξ0, λT } for which mixing was weak between the
high-level inflow and the denser interior fluid. The solid symbols (�, �) mark flow patterns 2
and 3, respectively, and indicate values of {R, ξ0, λT } for which vigorous mixing was observed
between the high-level inflow and the denser interior fluid. The solid line shows FrT (0) = 0.67
and the dashed line FrB (0) = 0.33 as deduced from our theoretical arguments (§ 4).

For sufficiently large values of R (�1/4 in our experiments), unidirectional flows
(�, �) were observed through the top and base openings – fluid at ambient density
entered the box through the top and dense fluid drained out through the base. Initial
conditions/box geometries giving rise to classical displacement flow are shown by
hollow circles (�) in figure 3. We note that this flow occurs for only a subset of
{R, ξ0, λT }. As R decreased, a classical displacement flow could only be maintained
by decreasing the initial layer depth ξ0; the decrease in ξ0 required became more
significant as λT increased – compare figures 3(a) and 3(d ).

For sufficiently small R (�1/4), bidirectional flows (�, �) were established at the
base whilst the flow of replacement fluid through the top remained a unidirectional
inflow. The flows observed at the values of {R, ξ0, λT } given by the hollow triangles
(�) were visually similar below the level of the interface to the classical mixing flow
identified by Linden et al. (1990). The bulk of the fluid exchange, in to and out of the
box, occurred at the base opening but with the associated vigorous mixing between
the saline layer and inflowing fluid at ambient density confined to within the lower
dense layer. For R � R1 (R1 ≈ 0.05, figure 3), this mixing flow was maintained for all
layer depths examined (0.1 � ξ0 � 1).
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aT aB h0 g′
0 tE Flow pattern

(cm2) (cm2) (cm) (cm s−2) (s) R λT ξ0 observed FrT (0) FrB (0)

59.1 7.1 20.1 31.8 319.0 8.32 0.38 0.67 1 (figures 4, 5) 0.14 2.32
7.1 19.6 18.6 24.8 366.9 0.36 0.14 0.62 2 (figures 6, 7) 1.16 0.60
3.1 19.6 20.1 35.1 699.0 0.16 0.09 0.67 3 (figures 8, 9, 13) 1.18† 0.28
0.2 19.6 21.0 22.0 13817.7 0.01 0.02 0.70 4 (figures 10, 11) 0.46‡ 0.02

Table 1. Geometry and initial conditions for the experiments presented in figures 4–13.
FrT (0) and FrB (0) were evaluated using (4.4) and (4.13), respectively. †Entries of FrT (0) for
bidirectional flows are inaccurate as FrT (0) is developed assuming unidirectional flow, however,
for flow pattern 3 the error in the estimate of FrT (0) is expected to be small due to weak
exchange at the base. ‡For flow pattern 4 the exchange is vigorous and the estimate of FrT (0)
is expected to be unreliable.

The solid symbols (�, �) on the flow regime diagrams indicate the region of
{R, ξ0, λT } space for which vigorous mixing on the interface driven from above, by
replacement fluid through the top, was observed (the hollow symbols (�, �) indicate
the regions of {R, ξ0, λT } parameter space for which the high-level inflow did not result
in vigorous mixing). In these experiments an intermediate layer formed and deepened
to eventually fill the box. The extent of the mixing was assessed by examining the
evolution of horizontally averaged buoyancy frequency profiles; if two peaks were
maintained this was an indication that two density interfaces were present/persisted
and, thus, that an intermediate layer had formed. Under these conditions the mixing
is referred to as ‘vigorous’.

One may also designate an additional flow pattern for the small region of the
parameter space where ξ0 � 1. For the four flow patterns considered herein, the bulk
of the flow within the box is in the vertical direction. However, if the initial layer of
dense fluid is sufficiently thin, then the flow realized is fundamentally different – the
bulk flow within the layer is in the horizontal direction. Work on this thin-layer case is
currently being addressed for a future paper and yields the possibility of non-selective
withdrawal (Turner 1973).

In the following sections (§ § 3.3 and 3.4) we present shadowgraph images, reduced
gravity profiles and buoyancy frequency profiles to assist in our description of and
to highlight the differences between the four flow patterns. The conditions for the
experiments described are listed in table 1. Images are shown at various times
throughout the transients. Time has been scaled on the ‘emptying time’ tE (from (1.4)
with H replaced with h0 and cB = cT = 0.6 in A∗ (1.2)) rather than on

√
h0/g

′
0; the

former scaling allows each flow to be compared directly with the no-mixing classical
displacement flow limit in which the box empties completely of dense fluid in a time
t/tE = 1. Dimensionless times given are rounded to two decimal places.

3.3. Unidirectional flows

For R �1/4, the flow through both the top and base was unidirectional for the entire
range of ξ0 and λT examined (figure 3). Replacement fluid at ambient density entered
solely through the top and dense fluid drained out through the base.

3.3.1. � Pattern 1. Classical displacement flow

Figure 4 depicts the flushing of dense fluid from the box by classical displacement
flow. These shadowgraph images were recorded from a typical experiment falling
in the region of {R, ξ0, λT } space indicated by the hollow circles (�) in the flow
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ẑ

(a) t = 0 s (t/tE = 0)

(c) t = 120 s (t/tE = 0.38)

(e) t = 240 s (t/tE = 0.75) ( f ) t = 300 s (t/tE = 0.94)

(d) t = 180 s (t/tE = 0.56)

(b) t = 60 s (t/tE = 0.19)

A

Figure 4. The unidirectional flow pattern ‘classical displacement flow’ (� in the flow regime
diagrams). The arrows in (b) indicate the direction of flow maintained through the openings. (a)
The initial stratification. (b)–(f ) Images show the basic two-layer stratification is maintained.

regime diagrams. Corresponding dimensionless reduced gravity (ĝ′(ẑ)) and buoyancy
frequency (N2(ẑ) = ∂ĝ′/∂ẑ) profiles are shown in figure 5. Whilst this flow pattern is
described by Linden et al. (1990), figures 4 and 5 are included here to allow direct
comparisons with the other flow patterns we identify.

The rate at which the dense fluid drained out decreased as was evident by both the
decreasing rate of descent of the interface and by transition in the plume flowing from
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Figure 5. Reduced gravity profiles ĝ′(ẑ) = g′(ẑ)/g′
0 in (a)–(c) and buoyancy frequency profiles

N2(ẑ) = ∂ĝ′(ẑ)/∂ẑ in (d )–(f ) of the ‘classical displacement flow’ experiment shown in figure 4.

the base opening into the ambient – from, in general, an initially highly turbulent
forced flow (Morton 1959) to one in which regular vortex generation immediately
downstream of the source was observed. The descending interface between the
dense and ambient layers either remained undisturbed or developed smooth cup-
like indentations resulting from impingement by the jet-like inflow. Slight scouring
was observed in the form of wisps of fluid being lifted from the interface (region
denoted A in figure 4b), however, there was no discernable increase of the upper layer
density and the basic two-layer stratification was maintained (figure 4b–f ). Evidence
of the persisting two layers can also be seen in the profiles of figure 5. Apart from
a vertical displacement, the shape of the reduced gravity profiles remains almost
constant. As expected for classical displacement flow, there is a single peak in the
buoyancy frequency profile; the characteristics of which remain constant over time
which, in accord with the reduced gravity profiles, indicates that negligible mixing
and diffusion have taken place over the time scale of the draining. Disturbances on
the density interface were observed to increase as the top opening area was decreased
relative to the base opening area, i.e. as R decreased. Nevertheless, entrainment of
dense fluid into the ambient layer, as a result of replacement fluid impinging on the
interface, was weak and only visible as fine tendrils of fluid rising from the dense
layer below, with no measurable increase in the upper layer density.

3.3.2. � Pattern 2. Displacement flow with interfacial mixing

Disturbances on the interface driven by inflow through the top of the box continued
to increase as R decreased (e.g. on increasing aB for a fixed {ξ0, λT }), or as ξ0 was
increased on increasing h0 (for a fixed {R, λT }), until eventually the inflow was highly
turbulent and sufficiently energetic to drive vigorous mixing at the interface. The
solid circles (�) in the flow regime diagrams indicate unidirectional flow but where
the structure of the stratification departed from the initial two layers due to the inflow
penetrating the interface. The basic structure of the stratification then changed from
two- to three-layer owing to a flux of buoyancy from the dense layer at the region of
impingement. We refer to this flow as ‘displacement flow with interfacial mixing’.
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(a) t = 0 s (t/tE = 0)

(c) t = 30 s (t/tE = 0.08)

(e) t = 120 s (t/tE = 0.33) ( f ) t = 165 s (t/tE = 0.45)

(d) t = 60 s (t/tE = 0.16)

(b) t = 15 s (t/tE = 0.04)

?

A

ẑ

Figure 6. The unidirectional flow pattern ‘displacement flow with interfacial mixing’ (� in the
flow regime diagrams). The arrows in (b) indicate the direction of flow maintained through the
openings. (a) The initial stratification. (b)–(f ) Vigorous mixing, due to the inflowing ambient
fluid, is visible at the interface and results in the formation of an intermediate layer which
deepens. In (e) and (f ) the fountain driven by the inflow in the intermediate layer collapses
prior to reaching the lower interface.

Figure 6 depicts the typical draining observed. The vigorous mixing driven by the
inflow and the three-layer stratification that developed and persisted can clearly be
seen on the shadowgraph. During the initial development the inflowing jet impinged
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Figure 7. Reduced gravity profiles (a–c, g) and buoyancy frequency profiles (d–f ) of the
typical ‘displacement flow with interfacial mixing’ experiment shown in figure 6.

on the interface between the original two layers and penetrated the dense layer,
developing as a turbulent fountain within this layer (figure 6). Turbulence at the
impingement region entrained dense fluid from the lower layer which mixed with
fluid at ambient density in the jet. The resulting mixture, of a density between that
of the ambient and the original dense layer, spread laterally along the interface as
an intrusion until reaching the walls of the box, thereby, forming an intermediate
layer (figure 6b). The time scale for the formation of the intermediate layer was
of the order of 5 s, i.e. small compared with tE (table 1). The intermediate layer
increased in depth as it was supplied both with fluid from the jet and fluid entrained
from the dense layer. The three-layered nature of the developing stratification is
clearly evident from the reduced gravity profiles (figures 7b and 7c) and from the
twin peaks in the buoyancy frequency profiles (figures 7e and 7f ). We note from
figure 7(c) that mixing by the high-level inflow has caused a significant redistribution

of buoyancy with approximately one third of the total buoyancy (B = S
∫ H

0
g′dz)

remaining, accumulated within the intermediate layer.
At later times, when the intermediate layer was sufficiently deep, the fountain

collapsed back before reaching the lower interface and hence the mechanism for
entrainment across the lower density interface was lost – in figure 6(d ) the fountain
impinges on the lower interface whereas in figure 6(e) the top of the fountain (labelled
‘A’) no longer reaches the lower interface signifying the end of the entrainment period.
This behaviour is highlighted in the profiles shown in figure 7. Whilst the fountain
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interacted with the lower layer, the intermediate layer was supplied with saline
solution. This entrained flux reduced the density step between the lower two layers
seen in figure 7(e) by a decrease in the peak buoyancy frequency (compare with
figure 7d ). Once the fountain/lower interface interaction ceased the intermediate
layer was supplied solely with fluid at ambient density (and so diluted), thus the
density step between the lower and intermediate layer increased – this is evident from
the increased peak buoyancy frequency in figure 7(f ) compared with figure 7(e).

Once the original dense layer had completely drained from the box, fluid from what
was the ‘intermediate’ layer (and now the lowermost layer) began to drain out. This
fluid loss reduced the rate of deepening, however, the layer slowly deepened to fill the
box resulting in a weakly stratified interior (figure 7g).

The flow patterns observed in the unidirectional regimes (§ § 3.3.1 and 3.3.2) are
dependent on the momentum flux of the high-level inflow. For a fixed aT (and given
stratification) the momentum flux of the inflow is controlled by the area aB of the base
opening. As aB is increased, A∗ increases and the volume flux out of the box increases
(see (1.5)) and, thus, the momentum flux of the incoming jet of replacement fluid
(∝ Q2/aT ) increases. For sufficiently large values of aB , the resulting high-Reynolds-
number jet is able to fully penetrate the initial two-layer stratification resulting in
turbulent mixing and the formation of a third layer. However, once aB decreases below
some critical value (§ 4), there is insufficient energy in the jet to penetrate the density
interface in this way. Instead a depression is observed – turbulent scouring causes
fluid to be lifted from the dense layer into the layer above although this scouring
does not result in the formation of an intermediate layer. As aB decreases still further,
the velocities and shear associated with the inflow impingement are no longer large
enough to ensure the development of a turbulent jet and turbulent scouring is no
longer observed. The nature of the interfacial mixing and transition from pattern 1
to 2 is considered further in § 4.1.

3.4. Bidirectional flows

For top opening areas significantly smaller than base opening areas, typically for
aT � (1/4)aB , unidirectional flow was no longer observed throughout the draining.
Instead, fluid at ambient density was observed to enter the box through the base as
an exchange flow established. The nature of the exchange observed was complex and
varied during the drain. For all experiments in which exchange flows were observed,
the exchange ceased once the original lower layer had fully drained and the flow then
reverted to being unidirectional. By contrast, the exchange flow commenced either
after some initial period of unidirectional flow or immediately at t = 0. Typically,
the exchange observed was initially weak (specifically the volume flux of fluid
entering via the base was small relative to the volume flux through the top) and
its strength increased as the original lower layer flushed. This exchange, however, was
not continuous and was broken by intermittent periods of unidirectional outflow. As
with the unidirectional regimes, the jet-like flow of replacement fluid through the top
induced either weak (�) or vigorous (�) interfacial mixing.

3.4.1. � Pattern 3. Exchange flow with interfacial mixing

Figure 8 shows images from a typical experiment in which a mixing-like flow is
established below the level of the original interface and there is vigorous interfacial
mixing due to a jet-like inflow impinging from above. The corresponding dimensionless
reduced gravity and buoyancy frequency profiles are shown in figure 9. In this regime,
marked by the solid triangles (�) on the flow regime diagrams, interfacial mixing
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(a) t = 0 s (t/tE = 0) (b) t = 140 s (t/tE = 0.20)

(c) t = 210 s (t/tE = 0.30) (d) t = 280 s (t/tE = 0.40)

(e) t = 350 s (t/tE = 0.50) ( f ) t = 350 s (enlarged)

ẑ

A

B

C

Figure 8. The bidirectional flow pattern ‘exchange flow with interfacial mixing’ (� in the
flow regime diagrams). The arrows in (b) indicate the direction of flow, maintained for these
initial conditions/geometry, through the openings. (a) The initial stratification. (b)–(e) As in
figure 6 an intermediate layer formed during the transients. However, here a bidirectional flow
is established at the base opening (seen in the exploded view, figure f ).

driven by replacement fluid through the top again resulted in the formation of a
third layer which deepened to fill the box. However, in contrast to the previous flow
regimes, an exchange flow was observed at the base. This exchange can be seen during
the initial transients on the shadowgraph (figure 8b to the right of the region marked
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Figure 9. Reduced gravity profiles (a–c) and buoyancy frequency profiles (d–f ) of the
‘exchange flow with interfacial mixing’ experiment shown in figure 8.

‘A’) and during the later transients in the exploded view (figure 8f ). The onset of this
exchange, shown as a sequence of images in figure 14, is considered in detail in § 4.2.

Simultaneously, dense fluid drained out of and ambient fluid rose in through the
base opening. Incoming fluid at ambient density ascended as a turbulent plume-/
thermal-like flow and impinged on the density interface between the lower layer
and layer at intermediate density (region immediately below ‘B’ in figure 8d ). This
impingement caused a weak entrainment of fluid from the intermediate layer into the
dense layer below, reducing the net flux of volume into the intermediate layer and
thereby restricting its rate of growth. Vigorous mixing due to the high-level inflow
induced a three-layered stratification (figure 9c) and the resulting two interfaces
persisted during the transients (figure 8b and 8c, and the two peaks in the buoyancy
frequency profiles, figures 9e and 9f ). We refer to this class of flows as ‘mixing flow
with interfacial mixing’.

The lower layer gradually diluted over time (compare figures 9a–c) due to the
introduction of fluid at ambient density via the base exchange. A weak stratification
developed in the lower layer due to the rising plume/thermals driving a ‘filling box’-
like process in this layer. Eventually, the dense layer completely drained from the box.
At this time the exchange flow ceased.

As R decreased, for a fixed {ξ0, λT }, the volume flow rate of the inflow through the
base increased, thus reducing the net volume flux out of the lower dense layer. This
resulted in an increase in the time taken to drain the original lower dense layer.

3.4.2. � Pattern 4. Exchange flow

Considering a box with a single top opening, reductions in R or ξ0 (for a fixed
λT ) decrease the momentum flux of the inflow through the top opening until it is
insufficient to cause vigorous interfacial mixing. A two-layer stratification then persists.
Figure 10 shows images from a typical experiment in which interfacial mixing induced
by inflow through the top was negligibly weak (so that an increase in the upper layer
buoyancy could not be discerned with the density meter) and a strong exchange flow
was established and maintained at the base (i.e. the inward volume flux across the
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(a) t = 0 s (t/tE = 0) (b) t = 240 s (t/tE = 0.02)

(c) t = 480 s (t/tE = 0.03)

(e) t = 960 s (t/tE = 0.06) (f) t = 1200 s (t/tE = 0.08)

(d) t = 720 s (t/tE = 0.05)

ẑ

Figure 10. The bidirectional flow pattern ‘exchange flow’ (� in the flow regime diagrams).
The arrows in (b) indicate the direction of flow maintained through the openings. (a) The
initial stratification. (b)–(f ) A two-layer stratification is maintained, however, in this regime
the lower layer increases in depth, due to a net entrainment from the upper layer to the lower
layer, and dilutes (visible by the lightening of the dyed layer).
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Figure 11. Reduced gravity profiles (a–c) and buoyancy frequency profiles (d–f ) of the
‘exchange flow’ experiment shown in figure 10.

opening approximated the outward volume flux). Parameter values yielding this class
of flow pattern, referred to as simply ‘exchange flow’, are indicated in the flow regime
diagrams by the hollow triangles (�).

For all experiments conducted in this regime, the depth of the dense layer changed
very slowly when compared to the other flow patterns identified. This suggests that
the net volume flux out of this layer is relatively small and, thus, the volume fluxes
entering and exiting the lower layer are almost equal. In this case, the exchange is
referred to as ‘strong’; in contrast, exchanges in which the outward flux dominates
(see figure 14) are described as ‘weak’. For very small R (typically R � 0.01) the lower
dense layer was observed to increase in depth. The volume flux entrained from the
upper layer into the lower layer, due to the impingement of the fluid rising through
the base with the interface, then exceeds the volume flux through the top. Following
the same argument one might reasonably expect that it is possible to establish a
layer of approximately constant depth, at least for some period, when the rate of
entrainment of ambient fluid into the lower layer (due to interfacial impingement
from below) equals the volume flux through the top. Whilst a constant layer depth
was not observed experimentally, flows were realized in which the rate of change
of depth of the lower layer was very slow in comparison to the rate of dilution
(figure 10).

For all exchange flows examined, the influx of fluid at ambient density through the
base resulted in a decrease in the reduced gravity of the lower layer (compare
figure 11a–c). The lower layer was not uniformly well mixed, rather a weak
stratification established. This structure is attributed to buoyant fluid rising from
the base and spreading horizontally on reaching the interface and thereby stratifying
the intermediate layer by a process similar to that of the filling box (Baines & Turner
1969). The beginning of a horizontal intrusion, with front position labelled C and the
direction of motion shown by the arrow, is clearly visible in the exploded image of
figure 8(f ).
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Figure 12. Time series of buoyancy frequency N2 = ∂ĝ′/∂ẑ for the four flow patterns
identified. Note that the horizontal axis and colour bars have different scales.

3.5. Summary

The key features of the four flow patterns identified and the distinctions between
them are further revealed by comparing a time series of their respective buoyancy
frequency profiles. The colour at an individual point on each time series in figure 12
represents, for an individual experiment, the value of the horizontally averaged
buoyancy frequency (N2 = ∂ĝ′/∂ẑ) at the corresponding height and time. The colour
map has been normalized for each experiment so that black corresponds to the
maximum buoyancy frequency in that experiment. The data is presented in its raw
dimensional form and highlights the lack of a single characteristic time scale.

For classical displacement flow (figure 12a), a single peak in the buoyancy
frequency, shown by the green/yellow band, descends and corresponds to the single
density interface between the two layers. Apart from a vertical transposition, the
characteristics of the peak remain unaltered; with the width (see δz1 and δz2 on the
figure) and the maximum value (shown by the colouring on the band) remaining
constant with time. From these constant characteristics of the peak one may deduce
that the inflowing replacement fluid is not able to significantly smear or alter the
density step across the interface.

For displacement flow with interfacial mixing (figure 12b), two peaks are present
for the majority of the transients. Unlike classical displacement flow, the width of the
lower peak (blue/green band) increases in time (δz2 >δz1) due to the upward flux
of buoyancy induced by the jet-like high-level inflow/entraining fountain. The rising
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weaker upper peak (faint pink band) also increases in width and the peak value
decreases. The N2 value that the upper peak attains appears to reduce noticeably
when the fountain stops impinging on the lower interface (figure 6e and in figure 12b
for t � 120 s) and, thus, when the intermediate layer is thereafter diluted solely with
fluid at ambient density. For t � 200 s no strong gradients remain.

For exchange flow with interfacial mixing (figure 12c), the time series is initially
qualitatively similar to that of figure 12(b) (t � 100 s). This similarity is as a
consequence of a weak inflow through the base (see e.g. figure 8b). However, at
later times the influence of the inflow through the base on the stratification becomes
more significant due, in part, to the increasing strength of the base-level inflow relative
to the outflow and to the decreasing volume of the lower layer. This is visible (to
the right of the vertical line on figure 12c) by a continued widening of the peak
and marked decrease in the peak’s maximum value. Furthermore, in contrast to
figure 12(b), the region of strong gradient in the density profile is unable to reach the
base of the box due to the action of the exchange flow.

For exchange flow (figure 12d ), a single significant peak in the buoyancy frequency
is observed and ascends. A second weaker peak is also visible, indicated by an arrow
in the figure, with these density gradients established as the base-level inflow stratifies
the lowermost layer in a series of ‘descending fronts’ (cf. Baines & Turner 1969). The
magnitude of the significant peak decreases in time as a consequence of the reduction
in the density step across the interface due to base-level inflow diluting the lower
layer, and owing to the turbulence associated with the top-level inflow smearing the
interface. Note that, in contrast to the flow in figure 12(c), here the exchange flow
plays a significant role throughout the draining.

4. Transitions between flow patterns
We now develop scalings for the transitions between flow patterns. In § 4.1 the

transition between flow patterns with and without interfacial mixing is considered
and in § 4.2 the transition between unidirectional and bidirectional flow.

4.1. Mixing across the interface

The transition from classical displacement flow (flow pattern 1, �) to displacement
flow with interfacial mixing (flow pattern 2, �) occurred, for example, on decreasing
R (for fixed ξ0 and λT ) when the momentum flux of the inflowing jet (MT ) was
sufficiently large to disrupt the otherwise stable density interface and turbulently
entrain fluid from the lower layer to establish an intermediate layer. Assuming a
uniform velocity profile across the top opening

MT (0) =
QT (0)2

aT

=
A∗2

g′
0h0

aT

=
2c2

T

1 +
a2

T c2
T

a2
Bc2

B

aT g′
0h0 =

2c2
T

1 +
c2
T

c2
B

R2

λ2
T ξ 3

0 g′
0H

3, (4.1)

where MT (0) ≡ MT (t =0) and QT (0) ≡ QT (t =0) are the initial momentum and
volume fluxes through the top, respectively. Thus, for a fixed {R, ξ0, λT }, MT (0)
increases as g′

0 increases. However, this increase in the strength of the jet and, thus,
its ability to induce mixing is counteracted by the increased stability of the interface
resulting from the increased density contrast (see (4.3)).

Turbulent entrainment across a density interface is often characterized by an
interfacial Froude number Fr i = wi/(bi�g′)1/2, where w and b are the centreline
vertical velocity and radius of the inflowing jet, respectively, and �g′ is the reduced
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gravity step across the interface; the subscript ‘i’ denoting the value of the variable
at the interface. For convenience, we henceforth drop the subscript ‘i’ on Fr .
A number of researchers have examined turbulent mixing at, and entrainment
across, density interfaces. Linden (1973) examined vortex rings impinging on density
interfaces and proposed that such a ring could be considered an approximation to a
turbulent eddy. His experimental results supported a theoretical argument that the
volume flux Q∗ turbulently entrained across an interface scales as Q∗/(b2w) ∼ Fr3.
Baines (1975) and Kumagai (1984) both performed experiments investigating the
entrainment across density interfaces due to impinging plumes and jets. Baines (1975)
found that Q∗/(b2w) ∝ Fr3, while Kumagai (1984) proposed the empirical formula
Q∗/(b2w) = Fr3/(1 + 3.1Fr2 + 1.8Fr3) which reduces to Q∗/(b2w) = Fr3 for Fr � 1
and Q∗/(b2w) = 0.56 for Fr  1. Lin & Linden (2005a) examined entrainment across
density interfaces due to turbulent fountains and, for the range of interfacial Froude
numbers examined (Fr > 0.9) gave Q∗/(b2w) = 0.65 ± 0.17.

Modelling the inflow through the top opening as a fully developed self-similar
axisymmetric turbulent jet, the classic scalings (Fischer et al. 1979) give the jet
velocity and radius at the density interface, at time t =0, as

wi(t = 0) = w0 = αjetMT (0)1/2(H − h0)
−1 and bi(t = 0) = b0 = βjet (H − h0), (4.2)

where the empirical constants αjet = 7.0 ± 0.1 and βjet = 0.107 ± 0.003. With these
scalings the initial interfacial Froude number associated with flow in through
the top opening, FrT (0) = w0/(b0g

′
0)

1/2, can be expressed purely geometrically, i.e.
independently of g′

0:

FrT (0) = 21/2 αjet

β
1/2
jet

λT

R

(
1

c2
B

+
1

c2
T R2

)−1/2 (
1

ξ0

− 1

)−3/2

. (4.3)

On examination of (4.3) one may deduce that, consistent with our experimental results,
the initial interfacial Froude number, and thus the initial vigour of interfacial mixing,
increases as either R is decreased, λT is increased or ξ0 is increased (holding the other
two parameters constant in each case). The scaling for FrT in (4.3) is developed on
the assumption that the origin of the jet is coincident with the plane of the opening
at z = H . Hence, this is expected to provide a useful estimate provided H − h0  √

aT ,
i.e. the vertical extent of the jet is large compared with its source scale. Including an
origin correction for the jet ẑv = λT /(βjetπ

1/2), estimated geometrically by tracing the
jet back to a point source, gives

FrT (0) = 21/2 αjet

β
1/2
jet

λT

R

(
1

c2
B

+
1

c2
T R2

)−1/2 (
1

ξ0

− 1 + ẑv

)−3/2

. (4.4)

For a given geometry, the momentum flux of the inflowing jet is determined by

the total buoyancy B contained within the box (MT (t) ∼
∫ H

0
g′(z, t) dz). Buoyancy

is lost continuously as dense fluid drains out through the base and the maximum
value of the momentum flux (and, hence, the maximum ability of the inflow to cause
mixing) occurs at t = 0. Thus, FrT (0) characterizes the maximum level of mixing due
to the inflow and we expect a critical initial interfacial Froude number, FrT ,c say,
above which interfacial mixing is significant, i.e. as seen for flow pattern 2 or 3 (� or
�, respectively), to mark a transition from flow pattern 1 to 2. In other words, for
FrT (0) = w0/(b0g

′
0)

1/2 = FrT ,c = constant to define a boundary between flow patterns
with and without interfacial mixing. Figure 13 plots w0/(g

′
0h0)

1/2 = FrT ,c (b0/h0)
1/2 for

FrT ,c =0.67 together with our experimental data.
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Figure 13. The dimensionless initial centreline jet velocity at the interface w0/(g
′
0h0)

1/2 plotted

against the dimensionless jet width at the interface (b0/h0)
1/2. � No interfacial mixing observed.

� Significant interfacial mixing observed. The solid line shows the critical initial interfacial
Froude number FrT ,c =0.67.

It is clear that the line FrT ,c = 0.67 defines well the boundary between the regimes.
We attribute the limited scatter across the boundary primarily to disturbances induced
on removal of the plugs (§ 2) from the holes in the box. The solid line in the flow
regime diagrams shows the contour FrT (0) = FrT ,c = 0.67. We have only drawn this
contour for the portion of the parameter space where unidirectional flow is observed
(� and �). For bidirectional flow (4.4) is not valid as the volume flux through the
top QT (0) �= A∗√g′

0h0, thus MT (0) �= (A∗2
g′

0h0)/aT . Again, it can be seen (figure 3)
that FrT (0) = FrT ,c =0.67 separates well the experimentally observed regimes. Thus,
if FrT (0) � 0.67 we expect interfacial mixing to be insignificant, otherwise we expect a
break down of the initial two-layer stratification and the formation of an intermediate
layer.

For an initially ‘full’ box h0 = H (ξ0 = 1) and using (3.4), (4.4) reduces to

FrT (0) = 21/2 αjetβjetπ
3/4

Rλ
1/2
T

(
1

c2
B

+
1

c2
T R2

)−1/2

=
A∗

H 2

αjetβjetπ
3/4

λ
5/2
T

. (4.5)

Thus to ensure a classical displacement flow actually requires

A∗

H 2
<

FrT ,cλ
5/2
T

αjetβjetπ3/2
≈ 0.377λ5/2

T , (4.6)

rather than any combination of aT > 0 and aB > 0. For the two sets of measurements
presented by Linden et al. (1990), we estimate

(i) λT =

√
52.7

25
and A∗/H 2 ≈ 18.4

252
= 0.029 � 0.377λ5/2

T ≈ 0.017;

(ii) λT =

√
28.9

25
and A∗/H 2 ≈ 4.3

252
= 0.007 < 0.377λ5/2

T ≈ 0.008.
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Figure 14. Shadowgraph images of a typical first ‘burst event’ at the base opening. The
plume-like outflow and the thermal-like nature of the inflow are shown. Images correspond to
flow pattern 3 in table 1. (a) Solely outflow. (b)–(f ) Combined inflow and outflow.

4.2. The transition to bidirectional flow

The development of a number of flows began as unidirectional flow but during the
later transients non-sustained bursts of inflow were observed at the base opening,
which rose against the dominant outflow – these intermittent bursts being distinct
from the accepted notion of an exchange in which both inflow and outflow occur
continuously across an opening. Shadowgraph images of a typical ‘burst event’ are
shown in figure 14. The flow though the base opening was predominantly outflow. The
inflow took the form of rising thermal-like pulses of fluid. Following the first ‘burst’,
the base opening flow typically reverted to unidirectional outflow. Subsequent bursts
became increasingly energetic and advected larger volumes of buoyant inflow which
rose and created wave-like disturbances on the original density interface. Based on
our observations of the thermal-like nature of the inflow, which signalled a departure
from a continuous unidirectional flow, we now develop a simple model for isolating
the range of emptying-box starting conditions {R, ξ0, λT } which we expect will lead
to this non-unidirectional behaviour. Our aim is to formulate a constraint on the
starting conditions that enable a buoyant thermal to rise into the box via the base
opening, i.e. against the mean downward flow. Figure 15 depicts the basic situation
considered and the nomenclature adopted.

Suppose a volume of fluid at ambient density enters the box via the base opening
and rises as a thermal. From Scorer (1957), the vertical velocity ω of the thermal at
a height z is, to a first approximation,

ω(z) = c(g′
BVB)1/2(z + zv)

−1, (4.7)

where g′
B and VB are the reduced gravity and volume of the thermal at the plane

of the base opening z = 0, respectively, c (≈1.2) is an empirical constant and zv the
distance to a virtual origin below the thermal. We assume a spherical thermal so that
VB = 4

3
π (DB/2)3, where DB denotes the diameter of the thermal at the plane of the



160 G. R. Hunt and C. J. Coffey

0

zv

z

U

Virtual origin

g′ (z)

g′B
ωB

DB

U

Figure 15. A schematic of the emptying box in the region of the base opening illustrating
the incoming thermal (shown as a circular disk) in the plane of the base opening and at the
height where its rise speed equals the speed of the downward flowing environment.

opening. To estimate zv we appeal to the fact that the radius of a thermal increases
linearly with height r = βz, where β ≈ 1/4 from Scorer (1957), hence zv = −DB/(2β).

For conditions close to the transition between unidirectional and bidirectional
flows, the inward volume flux through the base opening is very weak (figure 14)
and the mean vertical velocity in the box with instantaneous stratification g′(z, t) is
approximated by

U =

⎧⎪⎪⎨
⎪⎪⎩

−QB

aB

for z � √
aB,

−QB

S
for z  √

aB,

(4.8a)

where

QB ≈ A∗

√∫ H

0

g′(z, t) dz =
√

2aT

(
1

c2
T

+
R2

c2
B

)−1/2
√∫ H

0

g′(z, t) dz. (4.8b)

The ratio of velocities |U (z = 0)/ω(z = 0)| = |UB/ωB | at the base opening enables us
to establish whether a thermal is able to rise (|UB/ωB | < 1) or is advected out of the
box (|UB/ωB | > 1). From (4.7) and (4.8),

∣∣∣∣UB

ωB

∣∣∣∣ =

(
3

2π

)1/2
1

cβ

A∗

aB

√√√√√
∫ H

0

g′ dz

DBg′
B

=

(
3

π

)1/2
R

cβ

(
1

c2
T

+
R2

c2
B

)−1/2

√√√√√
∫ H

0

g′ dz

DBg′
B

. (4.9)

Denoting the diameter of the thermal at the plane of the opening as a constant
fraction δ (0 <δ � 1) of the base opening diameter (i.e. DB = 2δ

√
aB/π), (4.9)
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reduces to

∣∣∣∣UB

ωB

∣∣∣∣ =
31/2

21/2π1/4

R

cβδ1/2

(
1

c2
T

+
R2

c2
B

)−1/2

√√√√√
∫ H

0

g′ dz

a
1/2
B g′

B

. (4.10)

In terms of the outward fluxes of volume (QB), momentum (MB) and buoyancy (FB)
at the base opening (4.10) reduces to∣∣∣∣UB

ωB

∣∣∣∣ =
31/2

2π1/4

1

cβδ1/2
FrB, FrB =

M
5/4
B

QBF
1/2
B

, (4.11)

where FB = QBg′
B and we have assumed that the outward velocity profile across the

base opening is uniform so that MB =Q2
B/aB . The dimensionless quantity FrB is a

Froude number expressed in terms of fluxes through the base opening. Thus, we
expect

FrB =
M

5/4
B

QBF
1/2
B

= 21/2

(
1

c2
B

+
1

c2
T R2

)−1/2

√√√√√
∫ H

0

g′ dz

a
1/2
B g′

B

= constant (4.12)

to characterize the flow through the base opening and provide the scaling for the
transition. For the two-layer stratification considered herein the initial value of FrB

(= FrB(0)) reduces to

FrB(0) =
A∗

aB

√
h0

a
1/2
B

= 21/2λ
−1/2
T R1/4

(
1

c2
B

+
1

c2
T R2

)−1/2

. (4.13)

Note that, as we are considering flow through the base, it is convenient to express
FrB(0) in terms of λB =

√
aB/h0 (see § 3.1):

FrB(0) = 21/2λ
−1/2
B

(
1

c2
B

+
1

c2
T R2

)−1/2

. (4.14)

Figure 16 shows 21/2λ
−1/2
B plotted against ((1/c2

B) + (1/c2
T R2))1/2 for the suite of

experiments we performed and thus the position of each point is indicative of the
initial value of FrB . The contour along which FrB(0) = 0.33 (shown by the solid
line) cleanly separates the unidirectional (�, �) and bidirectional (�, �) flow patterns.
This suggests that knowledge of the initial value of FrB , and thus of the initial
fluxes, is sufficient to predict a transition between unidirectional and bidirectional
flows – a transition which may occur either initially or at some later stage during
the transients. For FrB(0) > 0.33 we expect the flow through the base opening to
remain unidirectional throughout the transients, i.e. from t =0. For FrB(0) < 0.33 a
bidirectional flow is expected although not necessarily from t = 0. The region between
the curves (figure 16) FrB,c =0.2 <FrB(0) < 0.33 confining those experiments which
exhibited unidirectional flow during the initial transients and later developed an
exchange at the base. This exchange was observed only while the original dense layer
remained in the box. However, once this layer had fully drained, the exchange ceased
and the flow reverted to unidirectional flow. The boundary FrB = 0.2 was found by
considering the evolution of FrB , using (4.12), for five experiments and estimating its
value at the onset of exchange. We see that the flow pattern 4 experiments, for which
an exchange was observed from t =0, satisfy the condition FrB(0) < 0.2 (i.e. they lie
below the dotted line in figure 16) giving confidence in this bound.
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Figure 16. Log-linear plot of (2/λB )1/2 against ((1/c2
B ) + (1/c2

T R2))1/2. � and � unidirectional
flows, � and � bidirectional flows. The solid line is the contour FrB (0) = 0.33 and separates well
the unidirectional and bidirectional flows. The dashed line is the contour FrB (0) =FrB,c = 0.2.
For FrB (0) < 0.2 bidirectional flow was observed at the base opening from t = 0.

The scatter in figure 16 is attributed to the fact that (4.13) assumes a sharp two-
layer stratification, whereas, in the experiments some smearing of the initial density
stratification was unavoidable (see e.g. figure 5a).

4.3. Discussion

Whilst we developed the scaling for transition, FrB , by considering the velocity of a
rising thermal in a mean downward flow, the dependence on FrB may be deduced
from a number of alternative perspectives, thereby highlighting the robustness of this
scaling.

To begin with, note that FrB is proportional to the ratio of volume fluxes driven
by displacement and mixing flows, i.e. FrB ∝ Qd/Qm. We recall from § 1 that
Qm(∝ a

5/4
B

√
g′

B) is the volume flux expected if a classical mixing flow were established
(i.e. a balanced exchange across the base opening and zero volume flux through the

top) and Qd(= A∗
√∫ H

0
g′ dz) is the volume flux expected if a classical displacement

flow were established (i.e. unidirectional flow through base and top openings and an
absence of interfacial mixing). Thus, FrB � 1 implies that exchange flow will yield a
higher volume flux out of the box, whereas FrB  1 implies displacement flow will
result in a higher volume flux.

Alternatively, one would expect the behaviour of a high-Reynolds-number
unidirectional flow at the base opening to be determined purely by the relative fluxes
of momentum, volume and buoyancy as the outflow is plume-like. A Richardson
number Γ =2−7/2α−1

p π1/2Q2
BFBM

−5/2
B ∝ 1/Fr2

B (where αp is the plume entrainment
coefficient) is used to classify the source conditions of plumes (see e.g. Morton 1959).
Thus, we might have anticipated the onset of an exchange flow when the outflowing
plume was sufficiently lazy (i.e. for Γ  1). The critical Froude number FrB,c = 0.2
corresponds to Γ = Γc ≈ 70. This is in accordance with the work of Hunt & Kaye
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(2001) who, on investigating lazy plumes using a simple nozzle design, were unable
to reach such a large value of Γ without observing a bidirectional flow at the plume
source.

A third physical argument for the transition to bidirectional flow is based on the
position at z = zn of the neutral pressure level (NPL) – namely, the level at which the
pressures inside and outside the box are identical. Determining the NPL is relatively
straightforward (Appendix) and for a box containing an arbitrary stratification g′(z, t),
zn satisfies the implicit expression

c2
T

c2
B

R2 =

∫ zn

0

g′(z, t) dz∫ H

zn

g′(z, t) dz

. (4.15)

If aT ≡ 0 (and aB > 0) the NPL is coincident with the plane of the base opening. If
aT > 0, the NPL is above the base opening. Our observations suggest that small
fluctuations in the exterior environment may trigger fingers of ambient density
fluid to grow and enter through the base opening, see the region denoted ‘A’ in
figure 8(b). For z < zn internal pressures exceed those at the same horizontal level
in the exterior. Conversely, for z > zn external pressures exceed those in the interior.
Thus, we hypothesize that if these fingers grow to reach the NPL before being
advected back out of the box, they will continue to grow and remain in the box. In
other words, if the NPL is sufficiently close to the base of the box, these fluctuations
will result in an inward flux of ambient fluid across the base opening in addition to
the outward flux of dense fluid – i.e. exchange flow. The closer the NPL to the base,
the greater the number of fingers expected to grow to the NPL and so the stronger
the inflow. We expect exchange when the NPL is within a characteristic length scale
(∝ √

aB) of the base opening. For the two-layer initial stratification considered herein,
this pressure-based approach leads to a dependence on the same parameter FrB as
the velocity-based approach of § 4.2 as from (4.15), a NPL at zn = zc (i.e. at a critical
distance above the base opening so exchange can occur) requires

zc√
aB

=
FrB(0)2

2c2
B

. (4.16)

Taking FrB(0) = 0.33 and cB = 0.6 we have zc/
√

aB =0.15, implying that exchange
may be expected if 0 � zn � 0.15

√
aB . For our experiments this gives zc = 0.4 cm

� 0.15
√

aB � 0.9 cm, however we were unable to accurately determine the critical
NPL directly. The equivalent of figure 16 in terms of the height z = zc of the NPL is
shown in figure 18 (Appendix).

The NPL approach, in particular, shows the importance of the stratification on the
likelihood of exchange. By redistributing the buoyancy within the box the NPL may
be raised or lowered (see (4.15)), thus inhibiting or encouraging exchange to occur,
respectively. Thus, the interfacial mixing prevalent in flow patterns 2 and 3 actually
works to inhibit exchange as, by raising dense fluid, the NPL is elevated further away
from the base opening. We may therefore expect that the onset of exchange would
occur at a larger value of FrB(0) if the momentum of the inflow through the top
opening were diffused such that interfacial mixing was inhibited. In the context of a
naturally ventilated building containing warm air this could be achieved by diffusers
(e.g. mesh, gauze or grills) placed over the low-level opening.
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5. Conclusions
We have investigated the dynamics of emptying boxes, i.e. the draining of buoyant

fluid from a box into a quiescent environment of uniform and constant density. Focus
has been on a box (height H ), with openings in the top (area aT ) and base (area
aB) faces, whose interior is initially stably stratified in two homogenous layers – a
layer at ambient density separated by a sharp horizontal interface from a buoyant
layer. Our attention has been restricted to high-Reynolds-number flows and density
differences that are small compared with the density of the ambient. Additionally,
we have concerned ourselves only with boxes of cross-sectional areas S  {aT , aB}.
This constraint is met in the majority of building ventilation flows, a potential area
of application of this work, as open window/vent areas are typically less than 5 % of
the floor area.

A programme of laboratory experiments reveals that one of a range of four
possible flow patterns may be established, which result in a bulk vertical motion
in the box, depending on the initial depth of the buoyant layer relative to the box
height (ξ0 =h0/H ) and the box geometry, as characterized by the opening area ratio
R = aT /aB and λT =

√
aT /h0. The density of the buoyant layer relative to the ambient

density only influenced the time scale for the development of a given flow and not
the flow pattern realized.

We categorized the different patterns observed depending on whether (a) the
direction of the flow at the base opening, through which buoyant fluid drained out,
was unidirectional or bidirectional, and whether (b) replacement fluid at ambient
density, which flowed into the box through the top opening, resulted in vigorous
interfacial mixing.

Previous research indicated that either displacement flow, which occurs in the
absence of mixing at the interface by the replacement fluid and maintains a
unidirectional flow through openings, or mixing flow, whose bidirectional flow
through the base opening results in vigorous mixing and an interior maintained
at an approximately uniform density, are the only patterns possible. Notably, for the
former, a two-layer stratified interior was thought to persist, provided openings were
made in both top and base, and that the behaviour could be adequately described
solely in terms of an effective opening area (A∗) relative to the square of the box
height (H ), and the box cross-sectional area S.

We have shown that the aforementioned displacement and mixing flows represent
idealized limiting cases of no-mixing and complete-mixing by the replacement fluid,
respectively; that these flows occupy only a fraction of the {R, ξ0, λT } parameter space;
and that, in general, the dynamics of the emptying process are far more complicated
with turbulent inflow of fluid (through either top or base openings) yielding varying
degrees of mixing and stratification breakdown.

Our scalings and experimental data indicate that the flow from an emptying box can
be classified in terms of two Froude numbers. The first, FrT based on the dynamics
of the replacement fluid through the top opening and the interfacial density contrast.
The second, FrB based on the dynamics of the flow through the base opening. As
a consequence we were able to deduce that the top opening controls the extent of
interfacial mixing and the base opening controls the direction of flow.

If one considers the flow of replacement fluid through the top of the box
then interfacial mixing significantly alters the stratification from its initial form if
FrT � 0.66. In this case, vigorous turbulent mixing results in the development of
a layer of intermediate density which deepens to fill the box, i.e. whilst the total
buoyancy reduces with time the box actually fills rather than empties. In the context
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Figure 17. Plot of FrB (0) versus FrT (0) highlighting how the two Froude numbers are
sufficient to classify the four flow patterns. The vertical line is FrT (0) = 0.67 and the horizontal
line is FrB (0) = 0.33. The stars ( and �) show the experiments performed by Linden
et al. (1990) (aT = 52.7 cm2, aB =23.8 cm2 and aT = 28.9 cm2, aB = 5.1 cm2, respectively and
h0 = H =25 cm).

of purging heat from a building at night, this may lead to unexpected thermal
conditions on the following day and come as a surprise to the architect or ventilation
engineer who may reasonably have expected warm air to rise and empty from the
building.

If one considers the direction of flow through the base of the box then unidirectional
flow is maintained provided FrB � 0.2. For FrB � 0.2 replacement fluid flows into the
box through both the top and base openings. As FrB may be expressed as a ratio
of volume flow rates, we may reinterpret conditions for bidirectional flow as those
for which the volume flow rate that would be driven through the base opening if
(classical) mixing flow were assumed is at least a factor of five greater than that which
would be driven by (classical) displacement flow through the same area of openings.

Figure 17 shows the flow regime diagram replotted as FrB(0) against FrT (0). This
clearly highlights how the pair of Froude numbers {FrT (0), FrB(0)} at the onset of
the flow can be used to classify the transient emptying-box flows considered herein
into one of the four flow patterns (�, �, �, �). It also exposes a limitation of this
classification, namely, that we are unable to state FrT for the bidirectional flows
(i.e. if FrB(0) < 0.33 and aT > 0) as the volume flow rate through the top opening is
currently undetermined. Also shown ( and �) are the respective Froude numbers for
the experiments performed by Linden et al. (1990) in their investigations of classical
displacement flows. We note that, for one of their experiments ( ), interfacial mixing
may have been significant. This may explain the variation in their data from the
classical displacement flow theory they developed. Our scalings show that in fact true
classical displacement flows only occur if A∗/H 2 � 0.4(aT /H 2)5/4 (from (4.7)).

Whilst we have considered only an initial two-layered stratification we expect
the same basic range of flow patterns and our general classification to hold for
other stable initial stratifications. Furthermore, if openings were instead made in
the vertical walls of the box (as per the location of windows and doors in typical
buildings) or multiple openings made (as per an underfloor air distribution (UFAD)
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system, Lin & Linden 2005b) one would expect a similar pattern of flows to develop
albeit with different constant values for the Froude numbers at the transitions. Whilst
we expect the same basic range of flow patterns to be realized, further work targeting
the effect of multiple openings in the base and top would be informative.

A primary application of the results described is to the natural, or passive,
ventilation of buildings. As a consequence of the range of flow patterns we have
identified and notably the ‘displacement flow with interfacial mixing’ we are able to
deflect the criticism levelled at the use of fresh and salt water solutions to model
natural ventilation flows at small scale.

Mathematical models of flow patterns 2–4 (as described in § § 3.3.2, 3.4.1 and 3.4.2)
are currently being developed by the authors. Additionally, the work presented herein
is being extended to include effects of mixing by the inflow on the steady stratification
established by a continuous buoyancy input to mirror the emptying–filling box
(conducted in the absence of mixing by replacement fluid) work of Linden et al.
(1990). This coupled with the possibility of simultaneous exchange and unidirectional
flows through multiple openings at base level offers challenging avenues for future
research.

The authors gratefully acknowledge Arup and the EPSRC for their financial support
of this project. We would also like to thank the BP Advanced Energy Programme in
Buildings at Imperial for their financial support.

Appendix. Transition to bidirectional flow based on the neutral
pressure level (NPL)

In order to predict the transition between the unidirectional and bidirectional flow
patterns, the NPL (at z = zn(t)) is considered. A straightforward analysis following
Linden et al. (1990) yields

c2
T

c2
B

R2 =

∫ zn(t)

0

g′(z, t) dz∫ H

zn(t)

g′(z, t) dz

. (A 1)

To lower the NPL towards the base opening (i.e. for zn → 0) requires aT → 0, as
expected.

For the initial two-layer density stratification considered herein,

c2
T

c2
B

R2 + 1 = − h0

(zn − h0)
or zn = h0

(
1 +

c2
B

c2
T

R−2

)−1

. (A 2)

Note that, as expected, zn → 0 in the limits aT → 0 or aB → ∞ (i.e. R → 0); and
zn → h0 in the limits aB → 0 or aT → ∞ (i.e. R → ∞).

It is expected that the transition between unidirectional and bidirectional flows will
occur at a critical value of zn, for example, when zn = zc. As we expect the scale of the
base opening to be key in governing the onset to exchange, we propose that zc ∝ √

aB

or

zc√
aB

∝ R1/2

λT

(
1 +

c2
B

c2
T

1

R2

)−1

=
FrB(0)2

2c2
B

. (A 3)

Figure 18 shows 1/λT =(2/λB)1/2 plotted against R−1/2((1 + c2
B/c2

T )(1/R2)) and thus
represents the initial value of zn/

√
aB for the experiments performed. From the
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flow, � and � bidirectional flow. The solid line is the contour zn/
√

aB = 0.15 (equivalent to
FrB (0) = 0.33) and separates well the unidirectional and bidirectional flows. The dashed line is
the contour zn/

√
aB = 0.06 (equivalent to FrB (0) = 0.2). For zn/

√
aB < 0.06 bidirectional flow

is observed at the base opening from t = 0.

figure we can see that an initial NPL of zn ≈ 0.15
√

aB divides the flow patterns into
unidirectional and bidirectional regimes.
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